Preserve Chat Configuration Updates
When working with the Gemini API's chat functionality, it's common to initialize a chat session with specific parameters such as temperature
, max_output_tokens
, system_instruction
, and an initial history
. A challenge arises when you later want to dynamically update only the temperature
and max_output_tokens
without losing the previously set system_instruction
or the accumulated conversation history
.
The core principle to understand from the provided API structure is that a Chat
object's configuration (_config
) and history (_comprehensive_history
) are set during its initialization (__init__
) and are not directly modifiable through public methods afterwards. Therefore, to achieve dynamic updates while preserving all existing settings, you must:
- Retrieve the current state of the existing
Chat
session (its configuration and history). - Merge the new
temperature
andmax_output_tokens
values with the retrieved configuration. - Recreate a new
Chat
instance using the combined, updated configuration and the preserved history.
Key Components
google.genai.Client
: The main client for interacting with the Gemini API.google.genai.chats.Chat
: Represents an ongoing chat session.google.genai.types.GenerateContentConfig
: A Pydantic model (orGenerateContentConfigDict
for dictionary input) that encapsulates various model generation parameters, includingtemperature
,max_output_tokens
, andsystem_instruction
.google.genai.types.Content
: Represents a piece of content in the conversation, used for bothsystem_instruction
andhistory
.
Step-by-Step Guide for Preserving Configuration
Assume you have an existing chat
object that was created with an initial system_instruction
and has accumulated history
.
-
Access Current Configuration and History:
- The current
GenerateContentConfig
is stored in the_config
attribute of theChat
object. - The current chat history is accessible via the
get_history()
method of theChat
object. It's recommended to retrieve thecomprehensive
history (defaultcurated=False
) to ensure all turns, including those with invalid outputs, are preserved for context.
# From an existing chat_session object
current_config = chat_session._config
current_history = chat_session.get_history(curated=False) - The current
-
Prepare New Parameter Values:
- Obtain the desired new
temperature
andmax_output_tokens
from the user or another source. - Implement logic to handle cases where the user might not want to change a specific parameter (e.g., allow empty input to keep the current value).
- Obtain the desired new
-
Merge Configurations:
- Convert the
current_config
(which is a Pydantic model) into a mutable dictionary using.model_dump()
. - Update this dictionary with the new
temperature
andmax_output_tokens
values. The existingsystem_instruction
(and any otherGenerateContentConfig
fields) will be automatically carried over fromcurrent_config
. - Reconstruct a new
types.GenerateContentConfig
object from this merged dictionary.
# new_temperature and new_max_output_tokens are obtained from user input
# (e.g., None if the user didn't specify a change)
# Convert current config to dictionary for merging
new_config_dict = current_config.model_dump() if current_config else {}
if new_temperature is not None:
new_config_dict['temperature'] = new_temperature
if new_max_output_tokens is not None:
new_config_dict['max_output_tokens'] = new_max_output_tokens
# Create the final GenerateContentConfig object
final_config = types.GenerateContentConfig(**new_config_dict) - Convert the
-
Recreate the Chat Session:
- Call
client.chats.create()
again. - Pass the original
model
name (chat_session._model
). - Pass the
final_config
that now contains all preserved and updated parameters. - Pass the
current_history
to ensure the conversational context is maintained.
updated_chat_session = client.chats.create(
model=chat_session._model,
config=final_config,
history=current_history
) - Call
-
Replace the Old Chat Instance:
- Crucially, you must replace your reference to the old
chat_session
object with theupdated_chat_session
object. All subsequent interactions will then use the newChat
instance with the desired persistent parameters.
- Crucially, you must replace your reference to the old
Example Code
The following example demonstrates an interactive chat where users can type update_params
to change the temperature
and max_output_tokens
while keeping the system_instruction
and history
intact.
import google.genai as genai
from google.genai import types
import os
# Ensure your API key is set as an environment variable or passed directly
# os.environ["GOOGLE_API_KEY"] = "YOUR_API_KEY"
# --- Client Initialization ---
try:
client = genai.Client()
except Exception:
print("Google GenAI client could not be initialized.")
print("Please ensure GOOGLE_API_KEY environment variable is set or pass it directly.")
print("Using a mock client for demonstration purposes only if a real client isn't configured.")
# --- Mock Client for local testing without API key ---
class MockResponse:
def __init__(self, text):
self.text = text
def __str__(self):
return self.text
class MockChat:
def __init__(self, model: str, config: types.GenerateContentConfig, history: list[types.Content]):
self._model = model
self._config = config
self._comprehensive_history = history if history is not None else []
print(f"MockChat created: Model='{model}', Temp={config.temperature}, MaxTokens={config.max_output_tokens}, History Length={len(self._comprehensive_history)}")
if config.system_instruction:
print(f" System Instruction: '{config.system_instruction.parts[0].text}'")
def send_message(self, message: str):
# Append user message to mock history
self._comprehensive_history.append(types.Content(role='user', parts=[types.Part.from_text(message)]))
# Simulate model response
response_text = (
f"Mock response (T={self._config.temperature}, MaxTok={self._config.max_output_tokens})"
f" to: '{message}'. Current system instruction: '{self._config.system_instruction.parts[0].text}'"
)
model_content = types.Content(role='model', parts=[types.Part.from_text(response_text)])
self._comprehensive_history.append(model_content)
# Return a mock GenerateContentResponse
mock_gen_response = types.GenerateContentResponse(
candidates=[types.Candidate(content=model_content)]
)
return mock_gen_response
def get_history(self, curated: bool = False) -> list[types.Content]:
# For mock, always return comprehensive history
return self._comprehensive_history
class MockChats:
def create(self, model: str, config: types.GenerateContentConfig, history: list[types.Content] = None):
return MockChat(model=model, config=config, history=history)
class MockClient:
def __init__(self):
self.chats = MockChats()
client = MockClient()
# --- End Mock Client ---
def get_user_param_overrides():
"""Prompts the user for temperature and max_output_tokens, allowing for empty input."""
print("\n--- Enter New Model Parameters (Leave empty to keep current) ---")
temp_input = input("New Temperature (float, e.g., 0.7): ")
max_tokens_input = input("New Max Output Tokens (int, e.g., 200): ")
new_temperature = None
if temp_input:
try:
new_temperature = float(temp_input)
if not (0.0 <= new_temperature <= 1.0):
print("Note: Temperature usually ranges from 0.0 to 1.0 for typical use cases.")
except ValueError:
print("Invalid input for temperature. Keeping current value.")
new_temperature = None # Reset to None if invalid
new_max_output_tokens = None
if max_tokens_input:
try:
new_max_output_tokens = int(max_tokens_input)
if new_max_output_tokens <= 0:
print("Note: Max output tokens must be a positive integer.")
new_max_output_tokens = None # Reset to None if invalid
except ValueError:
print("Invalid input for max_output_tokens. Keeping current value.")
new_max_output_tokens = None # Reset to None if invalid
return new_temperature, new_max_output_tokens
def recreate_chat_with_updates(current_chat: genai.chats.Chat) -> genai.chats.Chat:
"""
Retrieves current chat state, merges with new parameters, and recreates the chat.
"""
print("\nAttempting to update chat parameters...")
# 1. Retrieve current configuration and history
# Accessing _config directly is necessary as there's no public getter
current_model_name = current_chat._model
current_gen_config: types.GenerateContentConfig = current_chat._config
current_history = current_chat.get_history(curated=False) # Get comprehensive history
# 2. Get new parameter values from user
new_temperature, new_max_output_tokens = get_user_param_overrides()
# 3. Merge configurations
# Start with a dictionary representation of the current config
updated_config_dict = current_gen_config.model_dump()
# Apply new parameters if provided by the user
if new_temperature is not None:
updated_config_dict['temperature'] = new_temperature
if new_max_output_tokens is not None:
updated_config_dict['max_output_tokens'] = new_max_output_tokens
# Create a new GenerateContentConfig object from the merged dictionary
final_gen_config = types.GenerateContentConfig(**updated_config_dict)
print("\nRecreating chat session with:")
print(f" Model: {current_model_name}")
print(f" Temperature: {final_gen_config.temperature}")
print(f" Max Output Tokens: {final_gen_config.max_output_tokens}")
if final_gen_config.system_instruction:
# Accessing parts[0].text is a simplification for typical text system instructions
print(f" System Instruction: '{final_gen_config.system_instruction.parts[0].text}'")
print(f" History length: {len(current_history)} turns")
# 4. Recreate the chat session
updated_chat = client.chats.create(
model=current_model_name,
config=final_gen_config,
history=current_history # Pass the preserved history
)
return updated_chat
def main_interactive_chat():
"""Initializes and runs an interactive chat session."""
# --- Initial Chat Setup ---
# Define an initial system instruction and history
initial_system_instruction = types.Content(parts=[types.Part.from_text("You are a knowledgeable and friendly AI assistant. Keep responses concise unless asked for details.")])
initial_history = [
types.Content(role='user', parts=[types.Part.from_text("Hi, what's your purpose?")]),
types.Content(role='model', parts=[types.Part.from_text("I'm here to assist you with information and tasks, designed by Google.")])
]
# Define initial generation config
initial_gen_config = types.GenerateContentConfig(
temperature=0.7,
max_output_tokens=150,
system_instruction=initial_system_instruction
)
print("--- Initializing Chat Session ---")
current_chat_session = client.chats.create(
model='gemini-pro', # Or your preferred model
config=initial_gen_config,
history=initial_history
)
print(f"Initial chat config: Temperature={current_chat_session._config.temperature}, MaxTokens={current_chat_session._config.max_output_tokens}")
print(f"Initial system instruction: {current_chat_session._config.system_instruction.parts[0].text}")
print(f"Initial history length: {len(current_chat_session.get_history())} turns")
print("\n--- Start Chatting ---")
print("Type 'update_params' to change temperature and max_output_tokens.")
print("Type 'quit' or 'exit' to end the chat.")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["quit", "exit"]:
print("Ending chat session. Goodbye!")
break
if user_input.lower() == "update_params":
# Call the function to recreate the chat with updated parameters
current_chat_session = recreate_chat_with_updates(current_chat_session)
print("\nChat session parameters updated. Continue typing messages.")
continue # Skip sending the "update_params" message to the model
try:
response = current_chat_session.send_message(user_input)
print(f"Model: {response.text}")
except Exception as e:
print(f"An error occurred during generation: {e}")
break
if __name__ == "__main__":
main_interactive_chat()